Metals – Toxic Elements – Urine Timed

Essential Nutrient and Toxic Elements Testing

Heavy metals can accumulate in the body and disrupt the balance of essential nutrients, and become toxic to organ systems. While certain elements are vital for proper body function, others such as mercury, lead, cadmium, aluminum, and arsenic are toxic to the human body and interfere with its functioning. These toxic metals have no known physiological functions and can cause harm to organ systems.

MosaicDX offers various testing options, including urine, blood, stool, and hair samples, to evaluate the status of toxic metals and essential elements. This allows practitioners to select the most clinically appropriate option for their patients.

Our high-complexity laboratory is committed to delivering accurate and reliable results in coordination with these top licensure programs:
Urine
Turnaround Time: 1-2 weeks

Turnaround times are estimates. Detailed order tracking is available in the MosaicDX Portal.

What patients might benefit from Heavy Metals Testing?

Heavy metals can accumulate within the body after exposure, attaching to your cells preventing them from performing their functions, causing symptoms that could be life threatening without treatment.

Sign and symptoms vary for each type of metal and range in severity based on an individual’s exposure, symptoms could include:

  • Alopecia
  • Anemia
  • Arrhythmia
  • Chills Low Body Temperature
  • Dehydration
  • Dental Amalgams
  • Difficulty breathing
  • Fatigue
  • Gastrointestinal Symptoms
  • Hypertension
  • Impaired Kidney Function
  • Inflammation
  • Memory loss
  • Nausea or Vomiting 
  • Numbness or Prickly Sensation in Hands and Feet
  • Parkinson's-like Symptoms
  • Risk of Developing Certain Types of Cancer
  • Vision problems
  • Weakness

Details

MosaicDX offers a number of testing options for assessing nutrient and toxic (heavy metals) elements, these include hair, red blood cell, whole blood, urine and stool.

The most applicable sample type can be determined by considering several factors, including toxicokinetics, dose, length of exposure, route of exposure, and half-life. By using multiple sample types, practitioners can choose the most clinically relevant option. To gain a better understanding, please read on below.

General

The Hair Elements analysis is a screening test that can provide information on recent and ongoing exposure to potentially toxic metals, such as methylmercury and arsenic, as well as the time-averaged status of specific nutrient elements.

Why choose hair

Hair is primarily an excretory tissue in terms of its element content. By analyzing the elements present in hair, practitioners can identify physiological disorders associated with imbalances in essential and toxic elements, in conjunction with other laboratory values and symptoms.

During protein synthesis in the hair follicle, elements become permanently incorporated into the hair and do not equilibrate with other tissues. This makes hair an ideal tissue for detecting recent exposure to toxic elements such as arsenic, aluminum, cadmium, lead, antimony, and mercury, as these elements may be 200 to 300 times more concentrated in hair than in blood or urine. The CDC recognizes hair mercury levels as a useful marker for exposure to neurotoxic methylmercury from fish in both mothers and infants.

Nutrient elements, such as magnesium, chromium, zinc, copper, and selenium, are essential for the normal function of vitamins and hundreds of important enzymes, and the levels of these elements in hair are correlated with levels in other tissues and organs.

Advancements in technology, instrumentation, and scientific protocols have made hair element analysis a reliable tool for providing useful data to physicians and their patients. According to a recent report by the U.S. Environmental Protection Agency, if hair samples are collected, cleaned, and analyzed properly by experienced personnel in a reliable laboratory, the data are reliable. (U.S.E.P.A. 600/4-79-049 However, hair is susceptible to external contamination from shampoos, bleaches, dyes, and other hair treatments. Thus, ruling out external sources of contamination is the first step in interpreting a hair element report.

Hair element analysis is a useful and cost-effective screening tool to detect excess, deficiency, or uneven distribution of elements in the body. However, it should not be solely relied upon for diagnosing essential element function and should be used alongside other laboratory tests and patient symptoms.

General

The analysis of red blood cell (RBC) elements is a method used to evaluate the levels of essential elements that play critical intracellular roles, such as magnesium, copper, and zinc. An imbalance in these essential elements can negatively affect various metabolic processes. Moreover, RBC element analysis is beneficial in detecting recent or continuous exposure to specific toxic metals, such as arsenic, cadmium, lead, methylmercury, and thallium, that accumulate predominantly in erythrocytes.

Why choose Red Blood Cell?

Red blood cell (RBC) analysis is a valuable tool for assessing the insufficiency or excess of essential elements that play crucial roles within cells or on blood cell membranes. An important feature of this analysis is that the cells are not washed to prevent partial loss of important elements, such as calcium, which bind to the plasma membrane. RBC element levels can provide insight into various health conditions such as:

  • Cardiotonic influences (magnesium, potassium)
  • Anti-inflammatory processes (selenium, copper, zinc)
  • Anemia (copper, iron)
  • Immunological function (zinc, copper, magnesium)
  • Glucose tolerance (chromium, manganese and possibly vanadium)

RBC element analysis can also help diagnose disorders associated with zinc deficiency, including dysgeusia, visual acuity loss, poor wound healing, alopecia, amino acid malabsorption, sexual impotence, depressed immune function, and growth retardation.

It’s essential to accurately assess essential element status to determine appropriate supplementation, as the absorption, transport, and metabolism of these elements are highly regulated. Inappropriate supplementation or dietary imbalance can have serious adverse health effects. For instance, excess intake of zinc or molybdenum can result in copper deficiency, and excessive retention of manganese can have severe neurotoxic effects.

Additionally, RBC element analysis can help assess ongoing or recent exposure to specific toxic elements that accumulate preferentially in erythrocytes, including arsenic, cadmium, lead, methylmercury, and thallium. Elevated levels of these toxic elements in RBCs only indicate recent or ongoing exposure and not the overall retention of these metals in the body.

RBC element analysis should be performed before and intermittently throughout detoxification or chelation therapy to monitor essential element status and identify needs for supplementation. Proper replacement and maintenance of adequate essential nutrient levels can reduce the apparent adverse “side effects” associated with detoxification agents and the general effects of mobilizing toxic elements. It’s important to note that abnormal levels of blood cell elements can occur in some diseases that may be misleading with respect to nutritional status. For example, blood cell copper levels may be temporarily elevated during an inflammatory response, whereas liver levels are not.

General

Whole blood metal testing is considered the gold standard for diagnosing lead, mercury, or other metal toxicity or poisoning. It is also used to evaluate recent or ongoing exposure to potentially toxic elements. This analysis measures the total levels of elements present in the blood, both extracellularly in serum/plasma and intracellularly within blood cells.

Why choose Whole Blood?

The measurement of both intracellular and extracellular circulating elements can be effectively achieved through whole blood analysis. Extracellular elements are responsible for specific functions in serum/plasma, whereas intracellular elements are necessary components of metalloproteins/enzymes in red blood cells and lymphocytes. The analysis of both compartments can provide a more complete evaluation of total blood element levels. Toxic elements, such as lead, can be transported in both fluid and cellular compartments of blood, so analyzing both compartments is necessary for accurate assessment of recent or ongoing exposure. However, it does not provide information on the net retention of toxic metals in the body.

Accurate assessment of essential element status in the appropriate compartment is necessary for appropriate supplementation, as the absorption, transport, and metabolism of essential elements are regulated and integrated. Improper supplementation or dietary imbalance can result in significant adverse health effects. For instance, an excess of zinc or molybdenum can lead to copper deficiency, while excessive assimilation of manganese can have serious neurotoxic effects resembling Parkinson’s disease.

Blood elemental analysis should be conducted before initiating metal detoxification and intermittently during therapy. Toxic metals disrupt essential element metabolism and are antagonistic to some elements such as cadmium to zinc and lead to calcium. Metal detoxification agents commonly utilized can cause significant urinary wasting of essential elements. For example, EDTA has a high affinity for zinc and manganese, and DMPS can cause marked increases in copper excretion. Therefore, evaluating essential element status is crucial for safe and effective metal detoxification therapy.

General

Urine element analysis has long been employed to assess exposure to potentially harmful elements and the excretion of essential nutrients. Moreover, the comparison of urine element levels before and after chelation therapy can provide an estimation of the net retention of toxic elements. Follow-up urine element testing after chelation therapy can be used to monitor the effectiveness of metal detoxification treatment. The results of the analysis can be presented as 24-hour excretion levels or normalized by creatinine concentration to account for variations in urine dilution.

Why choose urine?

Toxic metals can accumulate in the body over time, leading to adverse health effects and chronic disease. Therefore, it is essential to evaluate the accumulation of toxic metals objectively. The analysis of urine element concentrations before and after administration of a metal detoxification agent can help estimate net retention of potentially toxic elements. The goal is to determine whether an individual’s net retention of metals exceeds physiological tolerance, as toxicity occurs when the rate of assimilation exceeds the rate of excretion.

Pharmaceutical metal detoxification agents like EDTA, DMSA or DMPS can sequester “hidden” metals from deep tissue stores and mobilize them to the kidneys for excretion in the urine. However, different compounds have different affinities for specific metals. To evaluate net retention, it’s important to perform both pre- and post-provocation urinalysis to distinguish between ongoing exposures to metals and net bodily retention.

It’s also useful to analyze essential element levels in urine to evaluate nutritional status and the efficacy of mineral supplementation during metal detoxification therapy. However, metal detoxification agents can increase the excretion of specific nutrient elements such as zinc, copper, manganese and molybdenum. Additionally, urinary wasting of essential elements such as magnesium, calcium, potassium, and sodium in an unprovoked urine specimen can indicate early renal dysfunction.

Since urine volume can vary significantly, urine elements are usually expressed per unit creatinine for timed collections to compensate for urine dilution variation. For 24-hour collections, elements are reported as both units per 24 hours and units per creatinine.

 

General

Fecal elemental analysis is a useful method for assessing dietary exposure to toxic metals and estimating the potential for toxic metal accumulation in the body. Chronic and low-level assimilation of toxic metals can result in their accumulation in the body. In many cases, fecal (biliary) excretion is the primary natural route of elimination of toxic metals from the body. Specimen collection for fecal elemental analysis is simple and involves a single-step procedure. The levels of elements are measured using ICP-MS and are expressed on a dry weight basis to eliminate any variability related to the water content of the specimen.

Why choose stool?

The assessment of elements in feces offers a comprehensive evaluation of environmental exposure and the potential for toxic metal accumulation in the body, especially for toxic metals such as mercury, cadmium, lead, antimony, and uranium, which are primarily eliminated from the body through biliary excretion into the feces. The formation of metal-glutathione complexes is the primary way by which the body eliminates sulfhydryl-reactive metals, with over 90% excreted into the bile. Fecal mercury levels are highly correlated with the number of dental amalgams, indicating exposure to mercury from dental fillings. Conversely, fecal mercury levels are roughly ten times lower in individuals without dental amalgams. Pharmaceutical metal binding agents primarily remove toxic metals through renal excretion, whereas natural detoxification processes increase the rate of excretion into the feces. Analysis of fecal specimens can be a valuable tool for monitoring the efficacy of natural detoxification of metals in individuals with restricted diets. Additionally, intravenous administration of ascorbic acid or other nutraceutical protocols may enhance fecal excretion of toxic metals, potentially reducing the burden on the kidneys. Fecal elemental analysis provides a direct indication of dietary exposure to toxic metals and can help identify and eliminate chronic, low-level assimilation of toxic metals that result in significant accumulation in the body. This analysis is an alternative to the pre- and post-urinary toxic metals provocation test for individuals who have difficulty collecting urine or are intolerant to pharmaceutical metal detoxification agents.

Learn More About the Heavy Metals Test: Explore FAQs

Analytes

Please refer to the table provided below to identify the metals that are contained in each type of sample:

Urine Urine Hair Whole Blood Red Blood Cell Stool
Toxic Elements Toxic + Nutrient
Elements
Toxic + Nutrient
Elements
Toxic + Nutrient
Elements
Toxic + Nutrient
Elements
Toxic Elements
Analyte Count 20 38 39 22 18 13
Aluminium
Antimony
Arsenic
Barium
Beryllium
Bismuth
Boron
Cadmium
Calcium
Cesium
Chromium
Cobalt
Copper
Gadolinium
Germanium
Iodine/Iodide
Iron
Lead
Lithium
Magnesium
Mangagese
Mercury
Molybdenum
Nickel
Palladium
Phosphorus
Platinum
Potassium
Rubidium
Selenium
Silver
Sodium
Strontium
Sulfur
Tellurium
Thallium
Thorium
Tin
Titanium
Tungsten
Uranium
Vanadium
Zinc
Zirconium
Ratio:
Calcium/Magnesium
Ratio:
Sodium/Potassium
Ratio:
Zinc/Copper
Ratio:
Zinc/Cadmium
Ratio:
Calcium/Phosphorus

Sample Reports

The Metals test reports are useful resources for practitioners who want to gain valuable insights into heavy metals and mineral statuses.

Test Prep and Instructions

MosaicDX offers patient-friendly sample collection kits that simplify testing. Our kits include visual, step-by-step instructions for test preparation and sample collection, personalized shipping cards, and pediatric collection bags if needed. With MosaicDX, patients can easily collect samples for testing with confidence and accuracy.

Frequently Asked Questions

Patients with high toxic levels are at greater risk of concomitant exposure from all toxins. For patients with specific exposure history, practitioners can order individual panels or combine profiles to identify or more rapidly reduce or remove multiple sources of toxin exposure:

These test can all be done from one urine sample:

Have a question? We've got answers.

Our team of experts can help you find exactly what you need. Contact us now and let's get started.