

HOW THE BODY METABOLIZES ENVIRONMENTAL TOXICANTS

Review 95 references at MosaicDX.com/resource/how-the-body-metabolizes-environmental-toxicants-metabolite-chart

PHTHALATES						
PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS	
1-5. Phthalates	1-5. Diethylphthalates Di-n-butyl Phthalate (DBP) Di(2-ethylhexyl) Phthalate (DEHP)	Yes	1.9-3.5 hours for most metabolites. ¹	Phase I: Undergoes hydrolysis to form monoester phthalates, catalyzed by CES1 and CES2. ² Then, it undergoes oxidative metabolism in the liver via CYP2C9, CYP2C19, and CYP3A4. ² Phase II: Metabolites are conjugated with glucuronic acid and excreted via urine. ³	Sweating can help facilitate elimination. ³ May negatively impact mitochondrial function and the human microbiome ^{4,5} (may consider Organic Acid Test (OAT) and Comprehensive Stool Analysis (CSA)). Supporting microbiome with probiotics may decrease toxicity. ⁵	
BISPHENOLS						
PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS	
6. Bisphenol A (BPA)	6. Bisphenol A (BPA)	Yes	Oral exposure: 4.4-8.4 hrs ⁶ Dermal exposure: 11.1-30.2 hrs ⁷	Phase I: involves CYP450, specifically SPY3A4 ¹¹ Phase II: Primarily involves conjugation reactions, including glucuronidation (UGTs) and sulfation (SULTs). ^{9,10}		
7. Bisphenol S (BPS)	7. Bisphenol S (BPS)	Yes	6.8-7.9 hours	Phase I: CYP3A4 and 2C9 are involved in hydroxylation but phase 2 is the primary metabolic pathway of BPS.xi Phase II: Glucuronidation and sulfation of BPS facilitate detoxification and excretion via urine. ¹² These metabolites are generally considered inactive (related to endocrine disruption) compared to the parent compound. ¹³		

VOC'S						
PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS	
8. Xylene	8. 2-3-4-Methylhippuric acid (2,3,4-MHA)	Yes	Rapid initial phase: about 1 hour. Slower phase: 20-58 hours depending on the tissue.	Phase I: Involves methyl hydroxylation in the liver via CYP2E1 to form MHA. ¹⁴ Then, excreted via urine. ¹⁵	Absorbed primarily through inhalation , with about 60% retained in the lungs. ¹⁶ Can cause mitochondria damage and deplete glutathione (may consider OAT). ¹⁷	
9.Styrene/ Ethylbenzene	9. Phenylglyoxylic Acid (PGO)	Yes	1-10 hours	 Styrene Phase I: Oxidation via CYP2E1 to form styrene-7,8-oxide (SO).¹⁸ Then converted by mEH to form phenylglyoxylic acid, mandelic acid, and hippuric acid. Styrene Phase II: SO undergoes glutathione (GSH) conjugation to form PGO.¹⁹ Ethylbenzene: Hydroxylation by CYP2E1, mainly, but can also go through CYP1A2 and CYP2B6 to a lesser degree.²⁰ 	Variability in CYP2E1 activity for ethylbenzene metabolism may be due to genetic polymorphisms and environmental factors. ⁹ Mandelic and Hippuric acids are intermediates of Styrene's breakdown in the body. (may consider OAT). ²¹	
10. Benzene	10. N-Acetyl Phenyl Cysteine (NAP)	Yes	8 hours	Phase I: Oxidation of benzene to benzene oxide (BO) via CYP2E1. BO can be further metabolized through several pathways. ²² Phase II: GSH conjugation results in formation of NAP. ²³	Green tea can decrease oxidative stress from exposure. ²² Broccoli sprouts can enhance detoxification. ²³ Can be stored in bone marrow, causing a decrease in red blood cells and anemia . ²⁴	
11. Acrylonitrile (ACN)	11. N-Acetyl (2-Cyanoethyl) Cysteine (NACE)	Yes	3-18 hours	 Phase I: Oxidation through ACN to CNEO via CYP2E1 and then further degrade to cyanide.²⁵ Phase II: ACN conjugates with glutathione to form NACE and excreted via urine.²⁶ 	Fasting may enhance CYP2E1-mediated oxidative metabolism of ACN and decrease liver GSH levels, potentially increasing the toxicity of exposures. ²⁷	
12. 1-bromopropane (1-BP)	12. N-Acetyl (Propyl) Cysteine (NAPR)	Yes	6-8 hours	 1-BP Undergoes two pathways: CYP450-mediated oxidation and GSH conjugation. Phase I: CYP2E1 oxidation leads to formation of 1-bromo-2-propanol and bromoacetone. Phase II: Conjugate with GSH to form various mercapturic acids including NAPR.³⁰ 	Elimination can be accelerated with GSH (reduced) oral, IV, transdermal or N-acetylcysteine (NAC) supplementation. Observed effects on neurotransmitter metabolites (DOPAC, HVA, and SHIAA) ³² (may consider OAT).	
13. 1,3 butadiene	13. N-Acetyl (3,4-Dihydroxybutyl) Cysteine (NADB)	Yes	Variable; few minutes - few hours	Phase I: Oxidation by CYP2E1 and 2A6 (at increased concentrations) to form epoxide, diepoxybutane, and epoxybutane diol. Phase II: Several transformations involving GSH conjugation, forming mercapturic acids to be excreted via urine. ³¹	Inhalation is the predominant route of exposure; with half exhaled and the other half metabolized via liver and excreted in urine. ³² GSTT1 polymorphisms influence metabolism and detoxification. ³³	
14. Ethylene Oxide (EO), Vinyl Chloride (VC)	14. 2-Hydroxyethyl Mercapturic Acid (HEMA)	EO: somewhat more hydrophilic, VC: Yes	EO: 42-84 minutes; VC: 1-2 days	EO Phase I: Metabolized by CYP2E1 in liver, then undergoes hydrolysis by epoxide hydrolase. EO Phase II: Conjugation with GSH mediated by Glutathione S-transferase (GST). ³⁴ VC Phase I: Also metabolized by CYP2E1 to form CEO and CAA, and undergoes hydrolysis. VC Phase II: GSH conjugation. ^{35 36}	EO can convert to ethylene glycol, then to oxalic acid (may consider OAT). ^{37, 38} VC can cross the placenta and enter the fetus . ³⁰	

PARABENS

PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS
15-18. Parabens	15-18. Methylparaben (MeP) Ethylparaben (EtP) Propylparaben (PrP) Butylparaben (BuP)		Depends on the specific type of paraben but ranges from 7.7-20.3 hrs ⁴¹ MeP: 12.2 hrs, EtP: 12.0 hrs, Prp: 9.3 hrs. ⁴²	Phase I: Parabens undergo hydrolysis by carboxylesterases (CES1 mainly in the liver and CES2 is more active in the skin). ^{43 44} Phase II: Primarily undergo glucuronidation via UGTs. ⁴⁵	

PESTICIDES

PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS
19. Atrazine Mercapturate	19. Atrazine Mercapturate	Yes	12 hrs46	Phase I: Involves CYP450, particularly CYP1A2, leading to the formation of various metabolites. ⁴⁷ Phase II: Key enzymes in phase II are GST, specifically the pi class GST (hGSTP1-1). ⁴⁸	hGSTP1-1 catalyzes the conjugation of atrazine with glutathione, forming atrazine mercapturate, which is then excreted. ⁴⁸
20. 2,4-Dichlorop henoxyacetic Acid (2,4-D)	20. 2,4-Dichlorophenox yacetic Acid (2,4-D)	No, but chemical modifications can increase its lipophilicity	11.6 hours from plasma and 17.7 hours for urinary excretion.	Metabolism of 2,4-D is minimal and largely excreted as the unchanged parent compound - about 82% unchanged and 12% is excreted as a conjugate. ⁴⁹	2,4-D can form reactive metabolites, such as 2,4-D-CoA , which can covalently bind to proteins, potentially contributing to hepatotoxicity . This binding occurs through the formation of 2,4-D-S-acyl-glutathione (2,4-D-SG) thioester and covalent adducts with human serum albumin. ⁵⁰
21. Pyrethroids	21. 3-Phenoxybenzoic Acid (3PBA)	Yes	5-8 hours with 88% excreted in urine within 24 hrs of exposure.	Phase I: Undergo extensive metabolism in humans through hydrolysis and oxidation. CES1 and CES2 play a role in hydrolysis. ⁵¹ Many CYP450 enzymes, but especially CYP2C19 , exhibit highest intrinsic clearance of pyrethroid metabolites. ⁵² Phase II: Metabolites formed in Phase I reactions, such as 3PBA , may undergo further conjugation with amino acids, sulfates, and sugars. ⁵³	Pyrethroids have the ability to influence glucose metabolism and lipid oxidation. ⁵⁴ (may consider OAT)
22. Organophosphates (OPs)	22. Diethylphosphate (DEP)	Yes	Depends on type of organophosphate but can vary between 18 hours - 7 days.	Bioactivation: Involves oxidative desulfuration to form oxon metabolites - potent AChE inhibitors. Key CYP enzymes involved are CYP2B6 , 2C19 , and 1A2 . ⁵⁵ Detoxification: Involves dearylation of OPs to form inactive metabolites. CYP2C19 and 3A4 significantly contribute to this pathway, but 2C19 is involved in detoxification of chlorpyrifos and diazinon , converting them to non-toxic metabolites. ⁵⁶	Lactobacillus rhamnosus may help decrease toxic OP pesticide exposure by passive binding. ⁵⁷ Lactobacillus casei may decrease OP-induced cytotoxicity. ⁵⁸ Paraoxonase 1 (PON1) is involved in the hydrolysis of certain OPs. Polymorphisms in this enzyme can increase susceptibility to toxicity. ⁵⁹ PON1 can be upregulated by pomegranate juice. ⁶⁰

OTHER						
PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS	
23. Triphenyl Phosphate (TPHP)	23. Diphenyl Phosphate (DPP)	Yes	7.6 days	Phase I: TPHP undergoes O-dearylation to form DPP and hydroxylation to produce mono- and dihydroxylated metabolites with CYP1A2 and 2E1 playing a significant role. ⁶¹ Phase II: hydroxylated metabolites undergo conjugation, such as glucuronidation, to form glucuronide conjugates to be more water-soluble. ⁶²		
24. Acrylamide	24. 2N-Acetyl (Carbomethyl) Cysteine (NAE)	No	2.5 hours for initial phase and longer second phase extending up to several days.	Glutathione Conjugation: acrylamide + GSH forms NAE, which is then excreted in the urine. This accounts for the majority of acrylamide metabolism (75-86%). ⁶³ Oxidation to Glycidamide: this is done via CYP2E1. Glycidamide is considered a more reactive and potentially genotoxic metabolite. ⁶⁴	The relative contribution of these pathways can vary based on individual factors such as genetic polymorphisms in CYP2E1 and GSTs , as well as external factors like diet and exposure levels. ⁶⁵ GSH precursors such as NAC and methionine have been shown to protect against the cytotoxicity of AA and other metabolites. ⁶⁶	
25. Perchlorate	25. Perchlorate (PERC)	No	8 hours	Perchlorate is not metabolized in the human body. Instead, it is absorbed and excreted largely unchanged. ⁶⁵ It competitively inhibits the sodium-iodide symporter in the thyroid gland, blocking iodide intake (which is essential for thyroid hormone synthesis). ⁶⁶	In breastfed infants, there is evidence suggesting bifidobacteria in the gut may reduce perchlorate via perchlorate reductase. ⁶⁹	
26. Oxybenzone	26. Oxybenzone (OBZ)	Yes	1.5 - 2 days ⁷⁰	Phase I: oxybenzone (BP-3) is primarily metabolized by CYP450 enzymes through hydroxylation and demethylation, producing BP-1 and BP-8. ⁷¹ Phase II: the hydroxylated metabolites are conjugated with glucuronic acid or sulfate, making them more water-soluble for excretion. ⁷²	Oxybenzone is a common ingredient in sunscreens and other personal care products. Its lipophilicity facilitates its penetration through skin and subsequent systemic absorption. ⁷³	

Visit MosaicDX.com/Test/TOXDetect-Profile for references.