

HOW THE BODY METABOLIZES ENVIRONMENTAL TOXICANTS

Review 95 references at MosaicDX.com/resource/how-the-body-metabolizes-environmental-toxicants-metabolite-chart

PHTHALATES							
PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS		
1-5. Phthalates	1-5. Various Metabolites	Yes	1.9-3.5 hours for most metabolites. ¹	Phase I: Undergoes hydrolysis to form monoester phthalates, catalyzed by CES1 and CES2. ² Then, it undergoes oxidative metabolism in the liver via CYP2C9, CYP2C19, and CYP3A4. ² Phase II: Metabolites are conjugated with glucuronic acid and excreted via urine. ³	Sweating can help facilitate elimination. ⁴ May negatively impact mitochondrial function and the human microbiome ^{5,6} (may consider Organic Acid Test (OAT) and Comprehensive Stool Analysis) Supporting microbiome with probiotics may decrease toxicity. ⁷		

V	O	C	S

PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS
6. Xylene	6. Methylhippuric acid (2,3,4-MHA)	Yes	In the terminal phase for most metabolites, half-lives are from 30-38.5 hours , and in the slow phase are about 20 hours .89	Phase I: Involves methyl hydroxylation in the liver via CYP2E1 to form MHA. ¹⁰ Then, excreted via urine. ¹¹	Absorbed primarily through inhalation, with about 60% being retained in the lungs . ¹² Can cause mitochondria damage and deplete glutathione . ¹³ (may consider OAT)
7. Styrene/ Ethylbenzene	7. Phenyl- glyoxylic Acid (PGO)	Yes	Styrene's half-life in blood 62-82 minutes. ¹⁴ Ethylbenzene's half-life from the first hour after exposure is 0.5 hours. ¹⁵	Styrene Phase I: Oxidation via CYP2E1 to form styrene-7,8,-oxidate (SO).16 Then converted by mEH to form phenylglyoxylic acid, mandelic acid, and hippuric acid.16 Styrene Phase II: SO undergoes glutathione (GSH) conjugation to form PGO.17 Ethylbenzene: Hydroxylation by CYP2E1, mainly, but can also go use CYP1A2 and CYP2B6 to a lesser degree.16,18	Variability in CYP2E1 activity for ethylbenzene metabolism may be due to genetic polymorphisms and environmental factors. ¹⁶ Mandelic and Hippuric acids are intermediates of Styrene's breakdown in the body. ¹⁹ (may consider OAT)

VOC'S

PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS
8. Benzene	8. N-Acetyl Phenyl Cysteine (NAP)	Yes	8 hours ²⁰	Phase I: Oxidation of benzene to benzene oxide (BO) via CYP2E1. BO can be further metabolized through several pathways. ²¹ Phase II: GSH conjugation results in formation of NAP. ²²	Green tea can decrease oxidative stress from exposure. ²³ Broccoli sprouts can enhance detoxification. ²⁴ Can be stored in the bone marrow, causing a decrease in red blood cells and anemia. ²⁵
9. Acrylonitrile (ACN)	9. N-Acetyl (2-cyanoethyl) Cysteine (NACE)	Yes	148 days ²⁶	Phase I: Oxidation through ACN to CNEO via CYP2E1 and then further degrade to cyanide. ²⁷ Phase II: ACN conjugates with glutathione to form NACE and excreted via urine. ²⁸	Fasting may enhance CYP2E1-mediated oxidative metabolism of ACN and decrease liver GSH levels, potentially increase the toxicity of exposures. ²⁹
10. 1-bromo- propane (1-BP)	10. N-Acetyl (Propyl) Cysteine (NAPR)	Yes	2-9 hours and is highly dependent on P450 and GSH pathways. ³⁰	1-BP undergoes 2 metabolism pathways: CYP450-mediated oxidation and GSH conjugation. ³¹ Phase I: CYP2E1 oxidation leads to formation of 1-bromo-2-propanol and bromoacetone. ³¹ Phase II: Conjugate with GSH to form various mercapturic acids including NAPR. ³¹	Elimination can be accelerated with GSH (reduced) oral, IV, Transdermal or N-acetylcysteine (NAC) supplementation. ³² Observed effects on various neurotransmitter metabolites (DOPAC, HVA, and 5HIAA). ³³ (may consider OAT)
11. 1,3 butadiene	11. N-Acetyl (3,4-dihydroxybutyl) Cystein (NADB)	Yes	2-6 days ³⁴	Phase I: Oxidation by CYP2E1 and 2A6 (at increased concentrations) to form epoxybutene, diepoxybutane, and epoyxybutane diol. ³⁵ Phase II: Undergoes several transformations involving GSH conjugation, leading to formation of mercapturic acids to be excreted via urine. ³⁵	Inhalation is the predominant route of exposure; with half exhaled and the other half metabolized via liver and excreted in the urine. ³⁶ GSTT1 polymorphisms have been shown to influence metabolism and detoxification. ³⁷
12a. Ethylene oxide (EO), Vinyl chloride (VC)	12a. 2-Hydroxyethyl Mercapturic Acid (HEMA)	EO: somewhat more hydrophilic: Yes	EO: 42 minutes ³⁸ VC: 4 minutes -4 hours, depending on dose and route of exposure. ^{39,40}	EO Phase I: Metabolized by CYP2E1 in liver, then it undergoes hydrolysis by epoxide hydrolase. 41 EO Phase II: Conjugation with GSH mediated by Glutathione S-transferase (GST). 41 VC Phase I: Also metabolized by CYP2E1 to form chloroethylene oxide (CEO) and chloroacetaldehyde (CAA) and undergoes hydrolysis 42,43,44 VC Phase II: GSH conjugation. 42,43,44	EO can be converted to ethylene glycol, and then be further metabolized to oxalic acid during the hydrolysis phase. ⁴⁵ (may consider OAT) VC can cross the placenta and enter the fetus. ⁴³

VO	C'S
----	-----

PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS		
12b. MTBE/ETBE	12b. 2-Hydroxy- isobutyric Acid (2HIB)	Yes	2-19 hours ^{46,47}	Phase I: Metabolized through oxidative pathways mediated by CYP2A6. ⁴⁸ Primary metabolic pathway involves conversion of MTBE to tert-butyl alcohol (TBA) and formaldehyde, and ETBE to TBA and acetaldehyde with CYP dependent demethylation. ⁴⁹ Then, oxidation of TBA forms 2-HIB (and 2-methyl1,2-propanediol) to be excreted in urine. ⁵⁰ Phase II: Other metabolites may go through additional glucuronide conjugation. ⁵¹	Accelerated metabolism of TBA occurs with oral exposure compared to other routes of exposure. ⁵¹ Has been found in fatty tissue and breast milk of patients. ⁴⁹		
12c. Acrolein	12c. 3-hydroxy- propylmercapturic acid (3-HPMA)	Moderately lipophilic	10 hours ⁵²	Primary metabolism via conjugation with GSH, leading to formation of GSH-acrolein adducts, which are then converted to mercapturic acid metabolites and excreted in urine. ⁵³	Can also undergo Michael Addition Reactions with nucleophiles such as ascorbic acid to be then further metabolized via the aldo-keto reductase enzymes (particularly AKR7A1) to form less toxic alcohols. ⁵⁴ Can directly decrease GSH levels in the buccal cavity; sublingual GSH may be beneficial after recent exposures. ⁵² Can be converted to malonic acid by aldehyde dehydrogenase. ⁵⁵ (may consider OAT)		
12d. Propylene Oxide (PO)	12d. N-acetyl (2, hydroxypropyl) cysteine (NAHP)	Yes	8 hours during the rapid phase, and 5.3 days in the slow phase. ⁵⁶ Note, there is very limited data in humans.	Phase I: Hydrolyzed via epoxide hydrolase (EH) in microsomes. ⁵⁷ Phase II: GST in the cytosol. Both occurring primarily in the liver. ⁵⁸	Glutathione or NAC supplementation may accelerate detoxification. ⁵⁸		

PESTICIDES

PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS
13. 2,4-Dichloro- phenoxyacetic acid (2,4-D)	13. 2,4-Dichloro- phenoxyacetic acid (2,4-D)	No, but chemical modifications can increase its lipophilicity	11.6 hours from plasma and 17.7 hours for urinary excretion. ⁵⁹	Metabolism of 2,4-D is minimal and is largely excreted as the unchanged parent compound – about 82% unchanged and 12% is excreted as a conjugate. ⁶⁰	2,4-D can form reactive metabolites, such as 2,4-D-CoA, which can covalently bind to proteins, potentially contributing to hepatotoxicity . This binding occurs through the formation of 2,4-D-S-acyl-glutathione (2,4-D-SG) thioester and covalent adducts with human serum albumin. ⁶¹
14. Pyrethroids	14. 3-Pheno- xybenzoic acid (3PBA)	Yes	5-7 hours ¹⁴	Phase I: Undergo extensive metabolism in humans through hydrolysis and oxidation. CES1 and CES2 play a role in hydrolysis. ⁶⁴ Many CYP450 enzymes, but especially CYP2C19, exhibit highest intrinsic clearance of pyrethroid metabolites. ⁶⁵ Phase II: Metabolites formed in phase I reactions, such as 3PBA, may undergo further conjugation with amino acids, sulfates, and sugars. ⁶⁶	Pyrethroids have the ability to influence glucose metabolism , and lipid oxidation . ⁶⁷ (may consider OAT)
15. Multiple Organopho- sphates (OPs)	15. Diethyl- phosphate (DEP) and Dimethyl- phosphate (DMP)	Yes	Depends on type of organophos- phate but can vary between 3-30 hours . ^{68,69}	Bioactivation: involves oxidative desulfuration to form oxon metabolites – potent AchE inhibitors. Key CYP enzymes involved are CYP2B6, 2C19, and 1A2.70 Detoxification: involves dearylation of OPs to form inactive metabolites. CYP2C19 and 3A4 significantly contribute to this pathway but 2C19 is involved in detoxification of chlorpyrifos and diazinon, converting them to non-toxic metabolites. ⁷¹	Lactobacillus rhamnoses may help decrease toxic OP pesticide exposure by passive binding. ⁷² Lactobacillus casei may decrease OP induced cytotoxicity. ⁷³ Paraoxonase 1 (PON1) is involved in the hydrolysis of certain OPs. Polymorphisms in this enzyme can increase susceptibility of toxicity. ⁷⁴ PON1 can be upregulated by pomegranate juice. ⁷⁵

OTHER

PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS
16. Triphenyl Phosphate (TPHP)	16. Diphenyl Phosphate (DPP)	Yes	The data in humans is lacking, but has been shown to be 1-2 days in other animals. ⁷⁶	Phase I: TPHP undergoes O-dearylation to form DPP and hydroxylation to produce mono- and dihydroxylated metabolites with CYP1A2 and 2E1 playing a significant role. ⁷⁷ Phase II: Hydroxylated metabolites undergo conjugation, such as glucuronidation, to form glucuronide conjugates to be more water-soluble. ⁷⁸	Cruciferous vegetables, quercetin, green and black teas, chicory root, and Astaxanthin can all enhance CYP1A2 activity. ⁷⁹
17. Acrylamide	17. N-Acetyl (carbomethyl) Cysteine (NAE)	No	3-4 hours for initial phase and 10 hours in the second phase. ^{80,81}	Phase I: Oxidation to glycidamide is done via CYP2E1. Glycidamide is considered a more reactive and potentially genotoxic metabolite. 82 Phase II: Glutathione conjugation occurs with Acrylamide + GSH and forms NAE, which is then excreted in the urine. This accounts for the majority of acrylamide metabolism (75-86%). 83	Contribution of these pathways can vary based on individual factors such as polymorphisms in CYP2E1 and GSTs, and external factors like diet and exposure levels . ⁸⁴ GSH precursors such as NAC and methionine have been shown to protect against the cytotoxicity of the metabolites. ⁸⁵
18. Perchlorate	18. Perchlorate (PERC)	No	8 hours ³⁶	Perchlorate is not metabolized in the human body. Instead, it is absorbed and excreted largely unchanged. ⁸⁷ It competitively inhibits the sodiumiodide symporter in the thyroid gland, blocking iodide intake (which is essential for thyroid hormone synthesis). ⁸⁸	In breastfed infants, evidence suggests bifidobacteria in the gut may decrease perchlorate via perchlorate reductase. ⁸⁹
19. Bisphenol S (BPS)	19. Bisphenol S (BPS)	Yes	6-7 hours ⁵²	Phase I: CYP3A4 and 2C9 are involved in hydroxylation but phase 2 is the primary metabolic pathway of BPS. ⁹¹ Phase II: Glucuronidation and sulfation of BPS facilitate detoxification and excretion via urine. ⁹² These metabolites are generally considered inactive (related to endocrine disruption) compared to the parent compound. ⁹³	Studies have found increased levels of neurotransmitters, and intestinal inflammation markers, after exposures. 94 (may consider OAT and CSA) Bisphenol A, which is a very similar analog to BPS (both with 2 phenol groups on each side of a sulfonyl group) has been shown to be excreted through sweat; sauna therapy may be beneficial in elimination. 95