

HOW THE BODY METABOLIZES ENVIRONMENTAL TOXICANTS

Review 95 references at MosaicDX.com/resource/how-the-body-metabolizes-environmental-toxicants-metabolite-chart

PHTHALATES							
PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS		
1-5. Phthalates	1-5. Various Metabolites	Yes	1.9-3.5 hours for most metabolites. ¹	Phase I: Undergoes hydrolysis to form monoester phthalates, catalyzed by CES1 and CES2. ² Then, it undergoes oxidative metabolism in the liver via CYP2C9, CYP2C19, and CYP3A4. ² Phase II: Metabolites are conjugated with glucuronic acid and excreted via urine. ³	Sweating can help facilitate elimination. ⁴ May negatively impact mitochondrial function and the human microbiome ^{5,6} (may consider Organic Acid Test (OAT) and Comprehensive Stool Analysis (CSA)). Supporting microbiome with probiotics may decrease toxicity. ⁷		

VOC'S METABOLISM LIPOPHILIC? HALF-LIFE **PARENT METABOLISM** ADDITIONAL COMPOUND YES/NO IN HUMANS 6. Xylene 6. Methylhippuric Yes In the terminal **Phase I:** Involves methyl hydroxylation Absorbed primarily through inhalation, phase for most in the liver via CYP2E1 to form MHA.¹⁰ with about 60% being retained in acid (2,3,4-MHA) the lungs.12 metabolites. Then, excreted via urine.11 half-lives are Can cause **mitochondria** damage from **30-38.5** and deplete glutathione.13 hours, and in (may consider **OAT**) the slow phase are about 20 hours.8,9 7. Styrene/ 7. Phenyl-Yes Styrene's Styrene Phase I: Oxidation via CYP2E1 to Variability in CYP2E1 activity for half-life in form styrene-7,8,-oxidate (SO).16 ethylbenzene metabolism may be due glyoxylic Acid Ethylbenzene Then converted by mEH to form blood **62-82** to genetic polymorphisms and (PGO) environmental factors 16 minutes.14 phenylglyoxylic acid, mandelic acid, and hippuric acid.16 Mandelic and Hippuric acids are Ethylbenzene's intermediates of Styrene's breakdown Styrene Phase II: SO undergoes glutahalf-life from thione (GSH) conjugation to form PGO.17 in the body.¹⁹ (may consider **OAT**) the first hour Ethylbenzene: Hydroxylation by CYP2E1, after exposure mainly, but can also go use CYP1A2 is **0.5 hours**. 15 and CYP2B6 to a lesser degree. 16,18

VOC'S

PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS
8. Benzene	8. N-Acetyl Phenyl Cysteine (NAP)	Yes	8 hours ²⁰	Phase I: Oxidation of benzene to benzene oxide (BO) via CYP2E1. BO can be further metabolized through several pathways. ²¹ Phase II: GSH conjugation results in formation of NAP. ²²	Green tea can decrease oxidative stress from exposure. ²³ Broccoli sprouts can enhance detoxification. ²⁴ Can be stored in the bone marrow, causing a decrease in red blood cells and anemia. ²⁵
9. Acrylonitrile (ACN)	9. N-Acetyl (2-cyanoethyl) Cysteine (NACE)	Yes	148 days ²⁶	Phase I: Oxidation through ACN to CNEO via CYP2E1 and then further degrade to cyanide. ²⁷ Phase II: ACN conjugates with glutathione to form NACE and excreted via urine. ²⁸	Fasting may enhance CYP2E1-mediated oxidative metabolism of ACN and decrease liver GSH levels, potentially increase the toxicity of exposures. ²⁹
10. 1-bromo- propane (1-BP)	10. N-Acetyl (Propyl) Cysteine (NAPR)	Yes	2-9 hours and is highly dependent on P450 and GSH pathways. ³⁰	1-BP undergoes 2 metabolism pathways: CYP450-mediated oxidation and GSH conjugation. ³¹ Phase I: CYP2E1 oxidation leads to formation of 1-bromo-2-propanol and bromoacetone. ³¹ Phase II: Conjugate with GSH to form various mercapturic acids including NAPR. ³¹	Elimination can be accelerated with GSH (reduced) oral, IV, Transdermal or N-acetylcysteine (NAC) supplementation. ³² Observed effects on various neurotransmitter metabolites (DOPAC, HVA, and 5HIAA). ³³ (may consider OAT)
11. 1,3 butadiene	11. N-Acetyl (3,4-dihydroxybutyl) Cysteine (NADB)	Yes	2-6 days ³⁴	Phase I: Oxidation by CYP2E1 and 2A6 (at increased concentrations) to form epoxybutene, diepoxybutane, and epoyxybutane diol. ³⁵ Phase II: Undergoes several transformations involving GSH conjugation, leading to formation of mercapturic acids to be excreted via urine. ³⁵	Inhalation is the predominant route of exposure; with half exhaled and the other half metabolized via liver and excreted in the urine. ³⁶ GSTT1 polymorphisms have been shown to influence metabolism and detoxification. ³⁷
12. Ethylene oxide (EO), Vinyl chloride (VC)	12a. 2-Hydroxyethyl Mercapturic Acid (HEMA)	EO: somewhat more hydrophilic: Yes	EO: 42 minutes ³⁸ VC: 4 minutes -4 hours, depending on dose and route of exposure. ^{39,40}	EO Phase I: Metabolized by CYP2E1 in liver, then it undergoes hydrolysis by epoxide hydrolase. 41 EO Phase II: Conjugation with GSH mediated by Glutathione S-transferase (GST). 41 VC Phase I: Also metabolized by CYP2E1 to form chloroethylene oxide (CEO) and chloroacetaldehyde (CAA) and undergoes hydrolysis 42,43,44 VC Phase II: GSH conjugation. 42,43,44	EO can be converted to ethylene glycol, and then be further metabolized to oxalic acid during the hydrolysis phase. ⁴⁵ (may consider OAT) VC can cross the placenta and enter the fetus. ⁴³

PESTICIDES LIPOPHILIC? METABOLISM IN HUMANS 11.6 hours from Metabolism of 2.4-D is minimal and 2.4-D can form reactive metabolites.

phenoxyacetic acid (2,4-D)	phenoxyacetic acid (2,4-D)	chemical modifications can increase its lipophilicity	plasma and 17.7 hours for urinary excretion. ⁵⁹	is largely excreted as the unchanged parent compound – about 82% unchanged and 12% is excreted as a conjugate. ⁶⁰	such as 2,4-D-CoA, which can covalently bind to proteins, potentially contributing to hepatotoxicity . This binding occurs through the formation of 2,4-D-S-acyl-glutathione (2,4-D-SG) thioester and covalent adducts with human serum albumin. ⁶¹
14. Pyrethroids	14. 3-Pheno- xybenzoic acid (3PBA)	Yes	5-7 hours ¹⁴	Phase I: Undergo extensive metabolism in humans through hydrolysis and oxidation. CES1 and CES2 play a role in hydrolysis. 64 Many CYP450 enzymes, but especially CYP2C19, exhibit highest intrinsic clearance of pyrethroid metabolites. 65 Phase II: Metabolites formed in phase I reactions, such as 3PBA, may undergo further conjugation with amino acids, sulfates, and sugars. 66	Pyrethroids have the ability to influence glucose metabolism , and lipid oxidation . ⁶⁷ (may consider OAT)
15. Multiple Organopho- sphates (OPs)	15. Diethyl- phosphate (DEP) and Dimethyl- phosphate (DMP)	Yes	Depends on type of organophos- phate but can vary between 3-30 hours . ^{68,69}	Bioactivation: involves oxidative desulfuration to form oxon metabolites – potent AchE inhibitors. Key CYP enzymes involved are CYP2B6, 2C19, and 1A2. ⁷⁰ Detoxification: involves dearylation of OPs to form inactive metabolites. CYP2C19 and 3A4 significantly contribute to this pathway but 2C19 is involved in detoxification of chlorpyrifos and diazinon, converting them to non-toxic metabolites. ⁷¹	Lactobacillus rhamnoses may help decrease toxic OP pesticide exposure by passive binding. ⁷² Lactobacillus casei may decrease OP induced cytotoxicity. ⁷³ Paraoxonase 1 (PON1) is involved in the hydrolysis of certain OPs. Polymorphisms in this enzyme can increase susceptibility of toxicity. ⁷⁴ PON1 can be upregulated by pomegranate juice. ⁷⁵

YES/NO

No but

COMPOUND

13 2 4-Dichloro-

PARENT

COMPOUND

13. 2 4-Dichloro-

OTHER

PARENT COMPOUND	METABOLISM OF PARENT COMPOUND	LIPOPHILIC? YES/NO	HALF-LIFE	METABOLISM IN HUMANS	ADDITIONAL DETAILS
16. Triphenyl Phosphate (TPHP)	16. Diphenyl Phosphate (DPP)	Yes	The data in humans is lacking, but has been shown to be 1-2 days in other animals. ⁷⁶	Phase I: TPHP undergoes O-dearylation to form DPP and hydroxylation to produce mono- and dihydroxylated metabolites with CYP1A2 and 2E1 playing a significant role. ⁷⁷ Phase II: Hydroxylated metabolites undergo conjugation, such as glucuronidation, to form glucuronide conjugates to be more water-soluble. ⁷⁸	Cruciferous vegetables, quercetin , green and black teas , chicory root , and Astaxanthin can all enhance CYP1A2 activity. ⁷⁹
17. Acrylamide	17. N-Acetyl (carbomethyl) Cysteine (NAE)	No	3-4 hours for initial phase and 10 hours in the second phase. ^{80,81}	Phase I: Oxidation to glycidamide is done via CYP2E1. Glycidamide is considered a more reactive and potentially genotoxic metabolite. 82 Phase II: Glutathione conjugation occurs with Acrylamide + GSH and forms NAE, which is then excreted in the urine. This accounts for the majority of acrylamide metabolism (75-86%).83	Contribution of these pathways can vary based on individual factors such as polymorphisms in CYP2E1 and GSTs, and external factors like diet and exposure levels . 84 GSH precursors such as NAC and methionine have been shown to protect against the cytotoxicity of the metabolites. 85
18. Perchlorate	18. Perchlorate (PERC)	No	8 hours ⁸⁶	Perchlorate is not metabolized in the human body. Instead, it is absorbed and excreted largely unchanged. ⁸⁷ It competitively inhibits the sodiumiodide symporter in the thyroid gland, blocking iodide intake (which is essential for thyroid hormone synthesis). ⁸⁸	In breastfed infants, evidence suggests bifidobacteria in the gut may decrease perchlorate via perchlorate reductase. ⁸⁹
19. Bisphenol S (BPS)	19. Bisphenol S (BPS)	Yes	6-7 hours ⁵²	Phase I: CYP3A4 and 2C9 are involved in hydroxylation but phase 2 is the primary metabolic pathway of BPS. 91 Phase II: Glucuronidation and sulfation of BPS facilitate detoxification and excretion via urine. 92 These metabolites are generally considered inactive (related to endocrine disruption) compared to the parent compound. 93	Studies have found increased levels of neurotransmitters, and intestinal inflammation markers, after exposures. 94 (may consider OAT and CSA) Bisphenol A, which is a very similar analog to BPS (both with 2 phenol groups on each side of a sulfonyl group) has been shown to be excreted through sweat; sauna therapy may be beneficial in elimination. 95