Common Patterns seen on the OAT

Steve Imgrund, MS, CNS, LDN

Big picture overview of OAT profile

Investigate common patterns within the test

Explore other nuanced patterns

What additional testing can be considered?

Organic Acids

WHAT ARE ORGANIC ACIDS (OA)?

Organic acidic products of cellular metabolism that are excreted in urine (in mammals)

- $\circ~$ Produced by living organisms including humans, bacteria, and fungi
- Evaluation of these downstream products of metabolic pathways provides insight into <u>potential nutrient deficiencies</u>, <u>inflammation, toxicity, and other imbalances that could be contributing to clinical complaints</u>
- Origins of Organic Acid Testing
 - To rule out rare Inborn Errors of Metabolism (IEM)- usually in infancy
 - Elevations of these organic acids (OA) reflect dysfunction in specific metabolic pathways
 - Accumulation of these toxic metabolites can by life-threatening
 - Symptoms observed in the newborn period include poor feeding and weight gain; nausea and vomiting; neuromuscular

issues (e.g., poor tone, seizures); and susceptibility to infection

Use of OAs have evolved from investigating IEM to providing insight into functional metabolic imbalances.

Overview: OAT Fundamentals

Requisition #:			Practitioner:
Patient Name:			Date of Collection:
Date of Birth:	Patient Age:	76	Time of Collection:
Patient Sex:			Print Date:
			Report Date:

Organic Acids Test - Nutritional and Metabolic Profile

		Metabolic Markers in Urine F	Reference Range mol/mol creatinine)	Patient Value	Reference Population - Females Age 13 and Over
		Intestinal Microbial Overgrowt	h		
		Yeast and Fungal Markers 1 Citramalic	≤ 3.6	1.1	
		2 5-Hydroxymethyl-2-furoic (Aspergillus)	≤ 14	1.2	
		3 3-Oxoglutaric	≤ 0.33	0.09	
	_	4 Furan-2,5-dicarboxylic (Aspergillus)	≤ 16	4.7	4.7
Fungus	Fungus	5 Furancarbonylglycine (Aspergillus)	≤ 1.9	0.17	
	U	6 Tartaric (Aspergillus)	≤ 4.5	0.23	Q23
		7 Arabinose	≤ 29	11	
		8 Carboxycitric	≤ 29	27	
		9 Tricarballylic (Fusarium)	≤ 0.44	0.10	-
		Bacterial Markers			
		10 Hippuric	≤ 613	35	-35
No	on-Specific	11 2-Hydroxyphenylacetic	0.06 - 0.66	6 0.38	£30
		12 4-Hydroxybenzoic	≤ 1.3	0.46	(4)
	Bacteria	13 4-Hydroxyhippuric	0.79 - 17	7.7	
		14 DHPPA (Beneficial Bacteria)	≤ 0.38	0.14	
_		Clostridia Bacterial Markers			
		15 4-Hydroxyphenylacetic (C. difficile, C. stricklandii, C. lituseburense	≤ 19 & others)	15	15
	Clactridia	16 HPHPA (C. sporogenes, C. caloritolerans, C. botulin	≤ 208 um & others)	133	
		17 4-Cresol (C. difficile)	≤ 75	1.3	13-
		18 3-Indoleacetic (C. stricklandii, C. lituseburense, C. subterm	≤ 11 sinale & others)	1.8	1.8

Oxalates

Mitochondria Function

Neurotransmitter Pathways

Mosaic Diagnostics					
Requisition #:					Practitioner:
Patient Name:					Date of Collection:
Metabolic Markers in Urine	Reference Ran (mmol/mol creatin	ge ine)		Patient Value	Reference Population - Females Age 13 and Over
Oxalate Metabolites					
					73
19 Glyceric	0.77	-	7.0	2.2	22
20 Glycolic	16	•	117	75	75
21 Oxalic	6.8	-	101	66	66
Glycolytic Cycle Metabolite	s				
22 Lactic		<	48	14	
22 Duraule		_	0.4		
23 Pyruvic		2	9.1	0.35	Q35
Mitochondrial Markers - Kro	ebs Cycle Metal	boli	tes		
24 Succinic		4	9.3	1.3	
25 Fumaric		≤	0.94	0.29	
26 Malic	0.06	-	1.8	0.63	63
27 2-Oxoglutaric		5	35	19	
28 Aconitic	6.8	-	28	7.2	
29 Citric		≤	507	245	245
Mitochondrial Markers - Ar	mino Acid Metal	boli	tes		
30 3-Methylglutaric		\$	0.76	0.35	
31 3-Hydroxyglutaric		≤	6.2	3.3	33
32 3-Methylglutaconic		≤	4.5	1.6	(16)
Neurotransmitter Metabolit	es				
Phenylalanine and Tyrosine Metabo	lites	-	3.6	2.4	
(dopamine)	0.00	-	3.0	3.4	3
vaniiiyimandelic (VMA) (norepinephrine, epinephrine)	0.46		3.1	1.3	
35 HVA / VMA Ratio	0.16	-	1.8	H 2.6	26
36 Dihydroxyphenylacetic (DOPAC (dopamine)	0.08	-	3.5	H 4.4	44
37 HVA/ DOPAC Ratio	0.10	-	1.8	0.78	€ 7 №
Tryptophan Metabolites		<	4.3	17	
(serotonin)	0.05	-	2.0	2.5	
	0.85	-	3.9	3.5	3.5
40 Kynurenic		\leq	2.2	1.1	(1.1)

Pyrimidines

Ketones

Fatty Acid Oxidation

B Vitamins and Antioxidants

Requ Patie	uisition #: ent Name:						Practitioner: Date of Collection:
Met	abolic Markers in Urine	Reference Rang	je ne)		Pa Va	itient alue	Reference Population - Females Age 13 and Over
P	yrimidine Metabolites - Fol	ate Metabolism					
41	Uracil		≤	9.7		4.3	(43)
42	Thymine		≤	0.56		0.17	
ĸ	etone and Fatty Acid Oxida	ntion					
43	3-Hydroxybutyric		1	3.1		0.49	
44	Acetoacetic		≤	10		0.15	¢1}
45	Ethylmalonic	0.44	-	2.8		1.2	
46	Methylsuccinic	0.10		2.2		0.87	
47	Adipic	0.04	-	3.8		0.52	
48	Suberic	0.18		2.2		1.0	
49	Sebacic		1	0.24		0.05	
N	utritional Markers						
Vita 50	min B12 Methylmalonic #		s	2.3		0.78	
Vita	min B6						
51	Pyridoxic (B6)		1	34		0.54	€ 53
Vita 52	Pantothenic (B5)		≤	10		1.1	
Vita 53	min B2 (Riboflavin) Glutaric ●	0.04	-	0.36	н	0.40	
Vita	min C						
54	Ascorbic	10		200		78	
Vita 55	min Q10 (CoQ10) 3-Hydroxy-3-methylglutaric #	0.17		39		6.8	6.8-
Glu 56	tathione Precursor and Chelating N-Acetylcysteine (NAC)	Agent	N	0.28		0	
Bio 57	tin (Vitamin H) Methylcitric #	0.19	-	2.7		1.0	

* A high value for this marker may indicate a deficiency of this vitamin.

Detoxification

Mosaic Diagnostics

Amin	C
Acid	S

equisition #: Patient Name:			Practitioner: Date of Collection:
letabolic Markers in Urine	Reference Range (mmol/mol creatinine)	Patient Value	Reference Population - Females Age 13 and Over
Indicators of Detoxification	n		
Slutathione			
58 Pyroglutamic #	10 - 33	24	24
Methylation, Toxic exposure			
59 2-Hydroxybutyric **	0.03 - 1.8	0.81	
Ammonia Excess			
60 Orotic	0.06 - 0.54	0.26	Q20
Aspartame, salicylates, or GI bac	teria		
61 2-Hydroxyhippuric	≤ 1.3	0.26	0.26
Amino Acid Metabolites			
62 2-Hydroxyisovaleric	≤ 2.0	0.07	
63 2-Oxoisovaleric	≤ 2.1	0.06	¢
64 3-Methyl-2-oxovaleric	≤ 2.0	0.05	¢09
65 2-Hydroxyisocaproic	≤ 2.0	0	
66 2-Oxoisocaproic	≤ 2.0	0.01	
67 2-Oxo-4-methiolbutyric	≤ 2.0	0.38	
68 Mandelic	≤ 2.0	0.07	
69 Phenyllactic	≤ 2.0	0.02	
70 Phenyipyruvic	\$ 2.0	0	
72 4-Hydroxynbenyllactic	\$ 2.0	0.03	
73 N-Acetylaspartic	≤ 38	1.0	
74 Malonic	≤ 9.7	4.8	48
75 4-Hydroxybutyric	≤ 4.8	1.3	
Mineral Metabolism			

The Organic Acids Test (OAT)

Mosaic Diagnostics' OAT provides a comprehensive nutritional and metabolic snapshot of an individual's overall health.

These OAs provide insight into the functional capability of key physiologic areas: <u>gut health, mitochondrial function, neurotransmitter status, detoxification, and macronutrient breakdown and nutritional status</u> By understanding these potential contributing factor to several diseases, and by correcting these imbalances, improvement in symptoms and optimization of the system may be achieved. This **urine-based assay** assesses 76 organic acids grouped into clinically relevant functional classes:

Intestinal Microbial Overgrowth	Ketone and Fatty Acid Oxidation
Oxalate Metabolites	Nutritional Markers
Glycolytic Cycle Metabolites	Indicators of Detoxification
Mitochondrial Markers / Krebs Cycle Metabolites	Amino Acid Metabolism
Mitochondrial Markers / Amino Acid Metabolites	Mineral Metabolism
Neurotransmitter Metabolites	Indicator of Fluid Intake (Creatinine)
Pyrimidine Metabolites / Folate Metabolism	

OAT Patterns

Pattern recognition – Common findings

Clostridia and Neurotransmitter Metabolism

Yeast activity and Oxalates

Toxic Exposure

Clostridia and Neurotransmitter Metabolism

Clostridia Overgrowth

- Many different clostridia species Some problematic, but not all
- Clostrida organic acids found on the OAT are known to have potential adverse health effects
 - 4-hydroxyphenylacetic (C. difficile, C. stricklandii, C.

lituseburense & others)

- HPHPA (C. sporogenes, C. caloritolerans, C. botulinum & others)
- **4-Cresol** (C. difficile)
- **3-Indoleactic** (C. stricklandii, C. lituseburense, C. subterminale &

DBH Inhibition

Clostridia Bacterial Markers			
15 4-Hydroxyphenylacetic (C. difficile, C. stricklandii, C. lituseburense & others)	≤ 30	H 40	
16 HPHPA (C. sporogenes, C. caloritolerans, C. botulinum & others)	≤ 227	214	
17 4-Cresol (C. difficile)	≤ 76	1.1	
18 3-Indoleacetic (C. stricklandii, C. lituseburense, C. subterminale & others)	≤ 11	1.8	1.8

This test was developed, and its performance characteristics determined by Mosaic Diagnostics Laboratory. It has not been cleared or approved by the US Food and Drug Administration.

Neurotransmitter Metabolites

Phenylalanine and Tyrosine Metabolites			
33 Homovanillic (HVA) (dopamine)	≤ 14	H 15	
34 VanillyImandelic (VMA) (norepinephrine, epinephrine)	0.87 - 5.9	3.9	3.9
35 HVA / VMA Ratio	0.12 - 3.0	H 3.9	3.9
36 Dihydroxyphenylacetic (DOPAC) (dopamine)	0.07 - 4.0	H 5.7	<u> </u>
37 HVA/ DOPAC Ratio	1.5 - 2.6	H 2.7	27

Clostridia Bacterial Markers

Neurotransmitter Metabolites

Phenylalanine and Tyrosine Metabolites			
33 Homovanillic (HVA) (dopamine)	0.39 - 2.2	H 3.2	3.2
34 VanillyImandelic (VMA) (norepinephrine, epinephrine)	0.53 - 2.2	0.75	<u>−−−</u> €75−−
35 HVA / VMA Ratio	0.32 - 1.4	H 4.2	
36 Dihydroxyphenylacetic (DOPAC) (dopamine)	0.27 - 1.9	H 2.9	2.9
37 HVA/ DOPAC Ratio	0.17 - 1.6	1.1	
Tryptophan Metabolites			
38 5-Hydroxyindoleacetic (5-HIAA) (serotonin)	≤ 2.9	1.3	13
39 Quinolinic	0.52 - 2.4	1.0	1.0
			<u>^</u>

Cleatridia Destarial Markers			
15 4-Hydroxyphenylacetic (C. difficile, C. stricklandii, C. lituseburense & others)	≤ 19	17	
16 HPHPA (C. sporogenes, C. caloritolerans, C. botulinum & others)	≤ 208	87	
17 4-Cresol (C. difficile)	≤ 75	3.1	3.1
18 3-Indoleacetic (C. stricklandii, C. lituseburense, C. subterminale & others)	≤ 11	7.5	

This test was developed, and its performance characteristics determined by Mosaic Diagnostics Laboratory. It has not been cleared or approved by the US Food and Drug Administration.

Yeast and Fungal Markers				
1 Citramalic		≤ 3.	6 1.8	
2 5-Hydroxymethyl-2-furoic (Aspergillus)		≤ 14	0.58	€.5 ₽
3 3-Oxoglutaric		≤ 0.3	33 0.10	<u>(1)</u>
4 Furan-2,5-dicarboxylic (Aspergillus)		≤ 16	2.4	
5 Furancarbonylglycine (Aspergillus)		≤ 1.9	9 0.14	
6 Tartaric (Aspergillus)		≤ 4.	5 0.17	Q.1>
7 Arabinose		≤ 29	20	20
8 Carboxycitric		≤ 29	0.08	Q.05
9 Tricarballylic (Fusarium)		≤ 0.4	44 0.10	
Bacterial Markers				
10 Hippuric		≤ 61	3 171	
11 2-Hydroxyphenylacetic	0.06	- 0.	66 0.24	€_2
12 4-Hydroxybenzoic		≤ 1.3	3 0.13	
13 4-Hydroxyhippuric	0.79	- 17	3.3	3.3
14 DHPPA (Beneficial Bacteria)		≤ 0.3	38 0.20	
Clostridia Bacterial Markers				
15 4-Hydroxyphenylacetic (C. difficile, C. stricklandii, C. lituseburense & or	thers)	≤ 19	9.5	
16 HPHPA (C. sporogenes, C. caloritolerans, C. botulinum	& others)	≤ 20	8 44	
17 4-Cresol (C. difficile)		≤ 75	1.2	12-
18 3-Indoleacetic (C. stricklandii, C. lituseburense, C. subterminal	e & others)	≤ 11	0.54	

MOSAIC DIAGNOSTICS

Neurotra	nsmitter	Metab	olites

Phenylalanine and Tyrosine Metabolites				
33 Homovanillic (HVA) (dopamine)	0.80 - 3.6	H 13		(13)
34 VanillyImandelic (VMA) (norepinephrine, epinephrine)	0.46 - 3.7	1.3	1.3	
35 HVA / VMA Ratio	0.16 - 1.8	H 10.0		(10)
36 Dihydroxyphenylacetic (DOPAC) (dopamine)	0.08 - 3.5	H 6.2	6.2	
37 HVA/ DOPAC Ratio	0.10 - 1.8	H 2.1		
Tryptopnan metabolites				
38 5-Hydroxyindoleacetic (5-HIAA) (serotonin)	≤ 4.3	0.74		
39 Quinolinic	0.85 - 3.9	3.1		———
40 Kynurenic	≤ 2.2	0.21		

Neurotransmitter Nuances

Nuanced Pattern: Non-Clostridia Factors

Yeast activity and Oxalates

Production

Candida, and other yeast, can produce excess glyoxylate, liver has the potential to convert that to Oxalate

Molds have been shown to produce Oxalic Acid, directly

Yeast activity and Oxalates

Clinical Overview

Crystal-like structures associated with symptom of pain

• Pain without Etiology?

Three metabolites measured - Oxalic, glycolic, glyceric acids

• Focus on Oxalates

Important to evaluate due to:

- Connection to candida and mold exposure
- Association with B6 need, and/or mitochondrial dysfunction

Glyoxylate Cycle in Yeast

Aspergillus sp (niger) & Oxalate

PMID: 16047945 28824560

Intestinal Microbial Overgrowth

Oxalate Metabolites

19 (Glyceric	0.21	- 4.9	1.6	1.6	_
20 0	Glycolic	18	- 81	77		
21 (Oxalic	8.9	- 67	H 151		151

Intestinal Microbial Overgrowth

Yeast and Fungal Markers

	1 Citramalic	0.11	- 2.0	1.0	
	2 5-Hydroxymethyl-2-furoic (Aspergillus)		≤ 18	2.5	2.5
	3 3-Oxoglutaric		≤ 0.11	0.03	<u>(.)</u>
	4 Furan-2,5-dicarboxylic (Aspergillus)		≤ 13	2.0	
	5 Furancarbonylglycine (Aspergillus)		≤ 2.3	0.24	€ 2 ♦
	6 Tartaric (Aspergillus)		≤ 5.3	1.2	12
Candida	7 Arabinose		≤ 20	H 28	
	8 Carboxycitric		≤ 20	0.72	€ 7 >
	9 Tricarballylic (Fusarium)		≤ 0.58	0.07	

Oxalate Metabolites

19 Glyceric	0.21	- 4.9	H 7.6	7.6
20 Glycolic	18	- 81	H 83	<u> </u>
21 Oxalic	8.9	- 67	65	65

Yeast/Candida Nuances

	Intestinal Microbial Overgrowth					
	Yeast and Fungal Markers 1 Citramalic		≤	3.6	1.0	
	2 5-Hydroxymethyl-2-furoic (Aspergillus)		≤	14	7.6	
\bigcirc	3 3-Oxoglutaric		≤	0.33	0.14	
(?)	4 Furan-2,5-dicarboxylic (Aspergillus)		≤	16	11	
$\mathbf{\cdot}$	5 Furancarbonylglycine (Aspergillus)		≤	1.9	0.69	-
	6 Tartaric (Aspergillus)		≤	4.5	0.76	0 .7 b
	7 Arabinose		≤	29	15	
	8 Carboxycitric		≤	29	0.48	Q.48
	9 Tricarballylic (Fusarium)		≤	0.44	0.28	- 0.20-
	Bacterial Markers					
	10 Hippuric		≤	613	63	-63
	11 2-Hydroxyphenylacetic	0.06	-	0.66	0.44	(,4)
	12 4-Hydroxybenzoic		≤	1.3	0.74	
	13 4-Hydroxyhippuric	0.79	-	17	6.5	6.5
	14 DHPPA (Beneficial Bacteria)		≤	0.38	0.22	
	Clostridia Bacterial Markers					
	15 4-Hydroxyphenylacetic (C. difficile, C. stricklandii, C. lituseburense & others)		≤	19	17	
	16 HPHPA (C. sporogenes, C. caloritolerans, C. botulinum & oth	ers)	≤	208	87	
	17 4-Cresol (C. difficile)		≤	75	3.1	3.1
	18 3-Indoleacetic (C. stricklandii, C. lituseburense, C. subterminale & o	thers)	≤	11	7.5	

(1)

1.5

17>

Oxalate Metabolites

19	Glyceric	0.77	- 7.0	H 22		22
20	Glycolic	16	- 117	H 128	128	
21	Oxalic	6.8	- 101	H 308		308

Nuances for high oxalate markers

- Threshold for Tolerance and Elimination is highly variable
- Address 1st page (if warranted) for major source
- B6 is needed to favor Oxalate to Glycine pathway
- Levels excreted not necessarily reflective of body burden.
- Low Oxalate Diet
 - Dependent on situation, and not dictated by numerical values on test
 - Rarely warranted or mild elevations
 - Evaluate symptom profile for severity

Yeast Activity and Riboflavin

Common pattern linked to acetaldehyde detoxification

- Ethanol is an end product of yeast metabolism of glucose
- Acetaldehyde produced in the previous step
 - Requires NAD, B2, Fe, Molybdenum

Acetaldehyde +NAD+. + H20 → acetate + NADH + 2H

Vitamin B2 (Riboflavin) 53 Glutaric *

0.04 - 0.36 H 0.45

0.45

The dietary modification and treatment of intestinal Candida overgrowth - a pilot study

S Otašević ¹, S Momčilović ², M Petrović ³, O Radulović ⁴, N M Stojanović ³, V Arsić-Arsenijević ⁵

Affiliations + expand PMID: 30166063 DOI: 10.1016/j.mycmed.2018.08.002

Abstract

Objective: The aim of this study was to evaluate the effectiveness of an alternative treatment in a form of recommended dist modification during and after conventional treatment with antifungals in

"Results of this pilot study showed that patients who adhered to diet modification during and after treatment with nystatin had better outcomes of ICOG and strongly suggest the need for diet modification in these patients..."

symptomatic effect in 56 out of 80 (70.0%) patients and 29 out of 40 (72.5%) in CG, with no statistically significant difference. However, at the second control stool examination, significantly higher percent (85%) of cured patients was recorded after three months of the recommended diet comparing with CG-17 out of 40 (42.5%).

Conclusion: Results of this pilot study showed that patients who adhered to diet modification during and after treatment with nystatin had better outcomes of ICOG and strongly suggest the need for diet modification in these patients which recommendation could reduce excessive prescription of antifungals.

Keywords: Antifungal treatment; Dietary modification; Intestinal candidosis.

Copyright © 2018 Elsevier Masson SAS. All rights reserved.

PubMed Disclaimer

Toxic Exposure – Heavy Metals, Mold, Chemicals

TOXIC PATTERNS ON OAT

PMID: 37446354

PMID: 23168274

Glycolytic Cycle Metabolites				
22 Lactic		≤ 48	28	28
23 Pyruvic		≤ 9.1	3.5	3.5
Mitochondrial Markers - Krebs Cycle	Metal	bolites		
24 Succinic		≤ 9.3	H 16	
25 Fumaric		≤ 0.94	H 1.5	
26 Malic	0.06	- 1.8	H 3.6	3.6
27 2-Oxoglutaric		≤ 35	18	18
28 Aconitic	6.8	- 28	19	19
29 Citric		≤ 507	H 702	702
Mitochondrial Markers - Amino Acid	l Metal	bolites		
30 3-Methylglutaric		≤ 0.76	H 1.3	1.3
31 3-Hydroxyglutaric		≤ 6.2	H 8.8	8.8
32 3-Methylglutaconic		≤ 4.5	3.1	3.1

Succinic acid

Elevations often associated with Fatigue and Brain Fog

Succinate is formed in the Krebs cycle from succinyl coA In the body succinate is converted to fumarate via succinate dehydrogenase This enzyme is the only one to participate in the Krebs cycle and ETC Common concern with elevations: brain fog and fatigue Look for possible toxins

Mitochondrial Markers - Krebs Cycle Metabolites

Pyroglutamic Acid Production

Gamma-Glutamyl Cycle

- Negative Feed back loop for Glutathione to inhibit gamma- glutamyl Cysteine synthase
- Without glutathione, the feedback inhibition is removed, and there is an upregulation of this enzyme, resulting in increased amounts of gamma-glutamyl cysteine, which itself is a precursor to the organic acid 5-oxoproline (pyroglutamic acid)

Indicators of Detoxification

Glutathione						
58 Pyroglutamic *	10	-	33	Н	42	42
Methylation, Toxic exposure						
59 2-Hydroxybutyric * *	0.03	2	1.8		1.7	 1.7
Ammonia Excess						
60 Orotic	0.06	1	0.54		0.25	 0.25
Aspartame, salicylates, or GI bacteria						
61 2-Hydroxyhippuric		≤	1.3	н	2.1	2.1

2-Hydroxybutyric

Homocysteine has 2 choices

1. NCI Thesaurus. (n.d.). Ncithesaurus.nci.nih.gov. Retrieved April 2, 2024, from

oxoprolinuria-as-cause-for-metabolic/

2.

- Methionine via Methylation
- Cysteine via trans-sulfuration pathway

Indicators of Detoxification

Glu	Itathione							
58	Pyroglutamic *	5.7	-	25		16	16	
Me	thylation, Toxic exposure							
59	2-Hydroxybutyric **		1	1.2	н	9.1		9.1
Am	monia Excess							
60	Orotic		4	0.46		0.10	0.10	
As	partame, salicylates, or GI bacteria							
61	2-Hydroxyhippuric		4	0.86		0.19	0.19	

Case Example

60-year-old female

- Chief complaint Recurrent yeast infections
- Presenting with joint pain, skin rash and metabolic dysfunction and disrupted sleep
 - High TGs, CRP, hbA1c
- Previously treated with both herbals and nystatin

Intestinal Microbial Overgrowth				
Yeast and Fungal Markers				
1 Citramalic	≤ 3.6	0.81		
2 5-Hydroxymethyl-2-furoic	≤ 14	1.5	- 1.5	
3 3-Oxoglutaric	≤ 0.33	H 0.67	0 67	
4 Furan-2,5-dicarboxylic (Aspergillus)	≤ 16	1.3	-(13)	
5 Furancarbonylglycine	≤ 1.9	0.64		
6 Tartaric (Aspergillus)	≤ 4.5	H 7.0		
7 Arabinose	≤ 29	H 334		334
8 Carboxycitric	≤ 29	0.17	Q.1)	
9 Tricarballylic (Fusarium)	≤ 0.44	0.12		
Bacterial Markers				
10 Hippuric	≤ 613	144	144	
11 2-Hydroxyphenylacetic 0.	06 - 0.66	0.44	Q.44	
12 4-Hydroxybenzoic	≤ 1.3	H 6.9		6.9
13 4-Hydroxyhippuric 0.	79 - 17	3.4	3.4-	
14 DHPPA (Beneficial Bacteria)	≤ 0.38	0.13	(1)	
Clostridia Bacterial Markers				
15 4-Hydroxyphenylacetic (C. difficile, C. stricklandii, C. lituseburense & others)	≤ 19	13	13	
16 HPHPA (C. sporogenes, C. caloritolerans, C. botulinum & others)	≤ 208	2.9	2.9-	
17 4-Cresol (C. difficile)	≤ 75	37		
18 3-Indoleacetic	≤ 11	7.9	7.9	

Oxalate metabolites				
19 Glyceric	0.77 -	7.0	H 8.5	
20 Glycolic	16 -	117	48	48
21 Oxalic	6.8 -	101	H 243	243
Glycolytic Cycle Metabolites				
22 Lactic	≤	48	12	
23 Pyruvic	≤	9.1	2.4	2.4
Mitochondrial Markers - Krebs Cy	cle Metabolit	tes		
24 Succinic	≤	9.3	H 9.4	9.4
25 Fumaric	≤	0.94	H 1.2	
26 Malic	0.06 -	1.8	H 2.3	
2-Oxoglutaric	≤	35	19	
28 Aconitic	6.8 -	28	15	15
29 Citric	≤	507	507	
Mitochondrial Markers - Amino A	cid Metabolit	tes		
30 3-Methylglutaric	≤	0.76	0.32	
31 3-Hydroxyglutaric	≤	6.2	4.8	4.8
32 3-Methylglutaconic	≤	4.5	1.7	
Neurotransmitter Metabolites				
henvialanine and Tyrosine Metabolites				
33 Homovanillic (HVA) dopamine)	0.80 -	3.6	H 8.7	
84 Vanillylmandelic (VMA) norepinephrine, epinephrine)	0.46 -	3.7	1.3	
35 HVA / VMA Ratio	0.16 -	1.8	H 6.6	
36 Dihydroxyphenylacetic (DOPAC) dopamine)	0.08 -	3.5	H 8.1	
27 UVA/DODAC Datia	0.10	1.0	11	

Pyrimidine Metabolites - Folate Meta	abolism		
41 Uracil	≤ 9.7	2.9	<u><</u>
42 Thymine	≤ 0.56	0.13	Q1>
Ketone and Fatty Acid Oxidation			
43 3-Hydroxybutyric	≤ 3.1	H 3.8	
44 Acetoacetic	≤ 10	5.2	
45 Ethylmalonic	0.44 - 2.8	1.2	(12)
46 Methylsuccinic	0.10 - 2.2	2.0	
47 Adipic	0.04 - 3.8	2.8	28
48 Suberic	0.18 - 2.2	H 6.3	→ 63
49 Sebacic	≤ 0.24	H 0.63	
Nutritional Markers			
Vitamin B12 50 Methylmalonic *	≤ 2.3	1.4	
Vitamin B6 51 Pyridoxic (B6)	≤ 34	3.4	
Vitamin B5 52 Pantothenic (B5)	≤ 10	8.8	
Vitamin B2 (Riboflavin) 53 Glutaric #	0.04 - 0.36	H 0.96	()
Vitamin C 54 Ascorbic	10 - 200	L 2.5	25
Vitamin Q10 (CoQ10) 55 3-Hydroxy-3-methylglutaric *	0.17 - 39	26	25
Glutathione Precursor and Chelating Agent 56 N-Acetylcysteine (NAC)	≤ 0.28	0.02	
Biotin (Vitamin H) 57 Methylcitric *	0.19 - 2.7	1.0	

Indicators of Detoxification						
Glutathione 58 Pyroglutamic *	10	- 33	21		21	
Methylation, Toxic exposure 59 2-Hydroxybutyric * *	0.03	- 1.8	H 2.1	2.1		
Ammonia Excess 60 Orotic	0.06	- 0.54	0.39		0.39	
Aspartame, salicylates, or GI bacteria 61 2-Hydroxyhippuric		≤ 1.3	0.10	0.10		

Pattern recognition – Common findings

Clostridia and Neurotransmitter Metabolism

Yeast activity and Oxalates

Toxic Exposure

An OAT test is just the start

Complementary Testing with Other Mosaic Diagnostics Profiles

Glyphosate Test

• Clostridia, mitochondrial stress

MycoTOX

• Fungal activity, mitochondrial stress, detoxification

Metals – Toxic + Nutrient Elements (Hair vs Urine vs Blood)

• Mitochondrial stress, detoxification section, NT section

IgG FoodMap * Candida

• Microbial section

Complementary Testing with Other Mosaic Diagnostics Profiles

Comprehensive Stool Analysis

• Microbial section - Bacterial analytes

Saliva Hormone Profile

• NT section

DNA Methylation Pathway Profile

• NT section, detoxification section

Thank You Q&A

