

Physician : SAMPLE
ORDER: 999999-9999
TEST: XXXXX
CLIENT REF: XXX
PATIENT: Patient Sample
ID: Rxxx
SEX: Female
AGE: 62 DOB: 09/22/1963

CLIENT #: 12345
Mosaic Diagnostics LLC
9221 Quivira Road
Overland Park, KS 66215 U.S.A.

Toxic Metals: urine

Urine Creatinine						
	RESULT mg/dL	REFERENCE INTERVAL	-2SD	-1SD	MEAN	+1SD
Creatinine	22.7	30 – 225				

SPECIMEN DATA

Comments:

Date Collected: 11/17/2025

Date Collected: 11/17/2020
Date Received: 11/29/2025

Date Received: 11/29/2023
Date Reported: 12/10/2025

Methodology: ICP-MS QQQ, Creatinine by Jaffe Reaction

Collection Period: 8 hours
pH upon receipt: Acceptable

< dl: less than detection limit

Results are creatinine corrected to account for urine dilution variations. Reference intervals are based upon NHANES (cdc.gov/nhanes) data if available, and are representative of a large population cohort under non-provoked conditions. Chelation (provocation) agents can increase urinary excretion of metals/elements.

Essential Elements; urine

ESSENTIAL ELEMENTS			PERCENTILE				
	RESULT mEq/g Creat	REFERENCE INTERVAL	2.5 th	16 th	50 th	84 th	97.5 th
Sodium (Na)	95.4	45–200			■		
Potassium (K)	60.8	20–110		■	■		
	RESULT µg/mg Creat						
Phosphorus (P)	779	180–1100		■	■		
Calcium (Ca)	170	30–350		■	■		
Magnesium (Mg)	72.4	25–230		■	■		
Zinc (Zn)	0.48	0.1–1.5		■	■		
Copper (Cu)	0.0464	0.006–0.026		■	■		
Sulfur (S)	574	250–1050		■	■		
Molybdenum (Mo)	0.0418	0.013–0.13		■	■		
Boron (B)	2.5	0.6–4		■	■		
Lithium (Li)	0.0127	0.009–0.2	■	■	■		
Selenium (Se)	0.101	0.03–0.25		■	■		
Strontium (Sr)	0.150	0.045–0.3		■	■		

	RESULT µg/g Creat	REFERENCE INTERVAL	68 th	95 th
Cobalt (Co)	<dl	< 1.7		
Iron (Fe)	5	< 50	■	
Manganese (Mn)	<dl	< 0.6		
Chromium (Cr)	0.44	< 2	■	
Vanadium (V)	<dl	< 0.8		

URINE CREATININE					
	RESULT mg/dL	REFERENCE INTERVAL	-2SD	-1SD	MEAN
Creatinine	22.7	30–225	■	■	■

SPECIMEN DATA					
Comments:					
Date Collected: 11/17/2025			Collection Period: 8 hours		
Date Received: 11/29/2025			pH upon receipt: Acceptable		
Date Reported: 12/10/2025					
Methodology: ISE, Spectrophotometry, ICP-MS QQQ, Creatinine by Jaffe Reaction					

< dl: less than detection limit

Results are creatinine corrected to account for urine dilution variations. Reference intervals are based upon NHANES (cdc.gov/nhanes) data if available, and are representative of a large population cohort under non-provoked conditions. Chelation (provocation) agents can increase urinary excretion of metals/elements.

Introduction

This analysis of urinary elements was performed by ICP-Mass Spectroscopy following acid digestion of the specimen. Urine element analysis is intended primarily for: diagnostic assessment of toxic element status, monitoring detoxification therapy, and identifying or quantifying renal wasting conditions. It is difficult and problematic to use urinary elements analysis to assess nutritional status or adequacy for essential elements. Blood, cell, and other elemental assimilation and retention parameters are better indicators of nutritional status.

- 24 Hour Collections

"Essential and other" elements are reported as mg/24 h; mg element/urine volume (L) is equivalent to ppm. "Potentially Toxic Elements" are reported as μ g/24 h; μ g element/urine volume (L) is equivalent to ppb.

- Timed Samples (< 24 hour collections)

All "Potentially Toxic Elements" are reported as μ g/g creatinine; all other elements are reported as μ g/mg creatinine. Normalization per creatinine reduces the potentially great margin of error which can be introduced by variation in the sample volume. It should be noted, however, that creatinine excretion can vary significantly within an individual over the course of a day.

If one intends to utilize urinary elements analysis to assess nutritional status or renal wasting of essential elements, it is recommended that unprovoked urine samples be collected for a complete 24 hour period. For provocation (challenge) tests for potentially toxic elements, shorter timed collections can be utilized, based upon the pharmacokinetics of the specific chelating agent. When using EDTA, DMPS or DMSA, urine collections up to 12 hours are sufficient to recover greater than 90% of the mobilized metals. Specifically, we recommend collection times of: 9 - 12 hours post intravenous EDTA, 6 hours post intravenous or oral DMPS and, 6 hours post oral bolus administration of DMSA. What ever collection time is selected by the physician, it is important to maintain consistency for subsequent testing for a given patient.

If an essential element is sufficiently abnormal per urine measurement, a descriptive text is included with the report. Because renal excretion is a minor route of excretion for some elements, (Cu, Fe, Mn Zn), urinary excretion may not influence or reflect body stores. Also, renal excretion for many elements reflects homeostasis and the loss of quantities that may be at higher dietary levels than is needed temporarily. For these reasons, descriptive texts are provided for specific elements when deviations are clinically significant. For potentially toxic elements, a descriptive text is provided whenever levels are measured to be higher than expected. If no descriptive texts follow this introduction, then all essential element levels are within acceptable range and all potentially toxic elements are within expected limits.

Reference intervals and corresponding graphs shown in this report are representative of a healthy population under non-provoked conditions. Descriptive texts appear in this report on the basis of measured results and correspond to non-challenge, non-provoked conditions.

Chelation (provocation) agents can increase urinary excretion of metals/elements. Provoked reference intervals have not been established therefore non-provoked reference intervals shown are not recommended for comparison purposes with provoked test results. Provoked results can be compared with non-provoked results (not reference intervals) to assess body burden of metals and to distinguish between transient exposure and net retention of metals. Provoked results can also be compared to previous provoked results to monitor therapies implemented by the treating physician. Additionally, Ca-EDTA provoked results can be used to calculate the EDTA/Lead Excretion Ratio (LER) in patients with elevated blood levels.

CAUTION: Even the most sensitive instruments have some detection limit below which a measurement cannot be made reliably. Any value below the method detection limit is simply reported as "< dl." If an individual excretes an abnormally high volume of urine, urinary components are likely to be extremely dilute. It is possible for an individual to excrete a relatively large amount of an element per day that is so diluted by the large urine volume that the value measured is near the dl. This cannot automatically be assumed to be within the reference range.

This analysis of urinary essential elements was performed by ICP-Mass Spectroscopy. Analysis of essential and other elements in urine is used primarily to identify and characterize renal wasting conditions. Analysis of essential elements in urine is not a direct approach for assessing nutritional status or adequacy. Blood, cell, and other assimilation and retention parameters are optimal direct indicators of essential element status.

If one intends to utilize urinary elements analysis to assess nutritional status or renal wasting of essential elements, it is recommended that unprovoked urine samples be collected for a complete 24 hour period. For 24 hour urine collections essential elements are reported as mg/24 h. For timed or first morning urine collections, elements are normalized per gram creatinine to avoid the potentially great margin of error which can be introduced by variation in the sample volume (concentration). It should be noted that creatinine excretion for an individual may vary to some extent over the course of a day, and from day to day.

If an essential element is sufficiently abnormal per urine measurement, a descriptive text is included with the report. If there are no descriptive texts following this introduction, all essential element levels are within acceptable range. All reference ranges are age and sex specific.

This analysis of urinary toxic metals and essential elements was performed by ICP-Mass Spectroscopy. Analysis of metals in urine is traditionally used for evaluation of very recent or ongoing exposure to potentially toxic metals. The urinary excretion of certain metals is known to be increased (provoked) to a variable extent after administration of specific chelating agents. Reference values and corresponding graphs are representative of a healthy population under non-provoked conditions; reference values have not been established for provoked urine samples.

Analysis of essential and other elements in urine is used primarily to identify and characterize renal wasting conditions. Analysis of essential elements in urine is not a direct approach for assessing nutritional status or adequacy. Blood, cell, and other assimilation and retention parameters are optimal direct indicators of essential element status.

If one intends to utilize urinary elements analysis to assess nutritional status or renal wasting of essential elements, it is recommended that unprovoked urine samples be collected for a complete 24 hour period. For 24 hour urine collections essential elements are reported as mg/24 h, and toxic metals are reported as $\mu\text{g}/24\text{ h}$. For timed, random or first morning urine collections, elements and metals are normalized per gram creatinine to avoid the potentially great margin of error that can be introduced by variation in the sample volume (concentration). It should be noted that creatinine excretion for an individual may vary to some extent over the course of a day, and from day to day.

If an essential element is sufficiently abnormal per urine measurement, a descriptive text is included with the report. For potentially toxic elements, a descriptive text is provided whenever levels are measured to be higher than the unprovoked reference values. If there are no descriptive texts following this introduction, all essential element levels are within acceptable range and all potentially toxic metals are at levels below the unprovoked reference values. All reference ranges and reference values are age and sex specific.

Copper High

Significantly elevated copper in urine can be secondary to provocative challenge with sulphydryl (-SH) bearing agents such as D-penicillamine ("Cuprimine"), DMSA, or DMPS. Large, multi-gram doses of vitamin C (ascorbic acid), administered orally or intravenously, may slightly or moderately increase excretion of copper.

Increased urinary copper can be an artifact of nutritional supplementation with copper or come from drinking water that is high in copper content. Acidic water carried in copper pipes can dissolve some copper which increases the copper intake if used for drinking or cooking. Molybdenum supplementation at high levels or if inappropriate may cause increased copper excretion; molybdenum and copper are mutually antagonistic in terms of body retention.

Bacterial or other infections may cause hypercupremia with attendant or delayed hypercuprinuria. This is transient and follows the inflammatory stage of the disease. Published studies such as Vivoli, Sci Total Environ, 66 p. 55-64, 1987 have correlated increased urinary copper with increased blood pressures in hypertensives. Biliary obstruction or insufficiency can decrease normal excretion of copper via the bile while increasing blood and urinary levels. Proteinuria also may feature increased copper levels.

Hyperaminoacidurias that include histidinuria can result in urinary copper wasting because histidine is a powerful chelator of copper. Hyperaminoacidurias that include histidine can be of many origins including: genetic factors, chemical or elemental toxicities, infectious agents, hyperthyroidism, sugar intolerances, nephrotic syndromes, etc.

In Wilson's disease, urinary copper is generally increased (above 100 micrograms/24 hours) without provocation or chelation. Use of D-penicillamine or DMPS as a provocative diagnostic procedure can yield a 5 - 10X increase in urinary copper levels in normal individuals. In contrast, Wilson's disease patients may then excrete 50-100 times the normal levels or 1000 to 2000 $\mu\text{g}/24\text{ hr}$. (Walshe, J. Rheumatology (supp/7) 8 p.3-8, 1981).

Urine analysis (unprovoked) is not an adequate procedure to assess copper stores or copper metabolism. Blood levels, erythrocyte copper content, erythrocyte superoxide dismutase activity, and serum ceruloplasmin are other more indicative measurements for copper status.

Lead High

This individual's urine lead (Pb) is higher than expected which means that Pb exposure is higher than that of the general population. A percentage of assimilated Pb is excreted in urine. Therefore the urine Pb level reflects recent or ongoing exposure to Pb and the degree of excretion or endogenous detoxification processes.

Sources of Pb include: old lead-based paints, batteries, industrial smelting and alloying, some types of solders, Ayurvedic herbs, some toys and products from China and Mexico, glazes on (foreign) ceramics, leaded (anti-knock compound) fuels, bullets and fishing sinkers, artist paints with Pb pigments, and leaded joints in municipal water systems. Most Pb contamination occurs via oral ingestion of contaminated food or water or by children mouthing or eating Pb-containing substances. The degree of absorption of oral Pb depends upon stomach contents (empty stomach increases uptake) and upon the essential element intake and Pb status. Deficiency of zinc, calcium or iron increases Pb uptake. Transdermal exposure is significant for Pb-acetate (hair blackening products). Inhalation has decreased significantly with almost universal use of non-leaded automobile fuel.

Lead accumulates in extensively in bone and can inhibit formation of heme and hemoglobin in erythroid precursor cells. Bone Pb is released to soft tissues with bone remodeling that can be accelerated with growth, menopausal hormonal changes, osteoporosis, or skeletal injury. Low levels of Pb may cause impaired vitamin D metabolism, decreased nerve conduction, and developmental problems for children including: decreased IQ, hearing impairment, delayed growth, behavior disorders, and decreased glomerular function. Transplacental transfer of Pb to the fetus can occur at very low Pb concentrations in the body. At relatively low levels, Pb can participate in synergistic toxicity with other toxic elements (e.g. cadmium, mercury).

Excessive Pb exposure can be assessed by comparing urine Pb levels before and after provocation with Ca-EDTA (iv) or oral DMSA. Urine Pb is higher post-provocation to some extent in almost everyone. Whole blood analysis reflects only recent ongoing exposure and does not correlate well with total body retention of Pb. However, elevated blood Pb is the standard of care for diagnosis of Pb poisoning (toxicity).

Mercury High

This individual's urine mercury (Hg) is higher than expected but may not be sufficiently high to be associated with overt pathophysiological effects. Symptomatology depends on many factors: the chemical form of Hg, its accumulation in specific tissues, presence of other toxicants, presence of disease that depletes glutathione or inactivates lymphocytes or is immunosuppressive, and the concentration of protective nutrients, (e.g. zinc, selenium).

Early signs of excessive Hg exposure include: decreased senses of touch, hearing, vision and taste, metallic taste in mouth, fatigue or lack of physical endurance, and increased salivation. Symptoms may progress with moderate or chronic exposure to include: anorexia, numbness and paresthesias, headaches, hypertension, irritability and excitability, and immune suppression/ dysregulation. Advanced disease processes from excessive Hg assimilation include: tremors and incoordination, anemia, psychoses, manic behaviors, possibly autoimmune disorders and renal dysfunction or failure. Note that in Hg exposure of long duration, renal excretion of Hg (and normal metabolites) may become impaired, and the urine level of Hg might be only mildly elevated or not elevated at all due to renal failure.

Mercury is used in: dental amalgams (50% by weight), explosive detonators; some vaccines, pure liquid form in thermometers, barometers, and laboratory equipment; batteries and electrodes, some medications and Ayurvedic herbs, fungicides and pesticides, and in the paper industry. The fungicide/pesticide use of mercury has declined due to environmental concerns, but Hg residues persist in the environment. Emissions from coal-fired power plants and hospital/municipal incinerators are significant sources of mercury pollution.

Methylmercury, the most common, organic form of Hg, occurs by methylation of inorganic Hg in aquatic biota or sediments (both freshwater and ocean sediments). Methylmercury accumulates in aquatic animals and fish and is concentrated up the food chain reaching highest concentrations in large fish and predatory birds. Except for fish, the human intake of dietary mercury is negligible unless the food is contaminated with one of the previously listed forms/sources. Daily ingestion of fish can result in the assimilation of 1 to 10 micrograms of mercury/day.

Depending upon the extent of cumulative Hg exposure, elevated levels of urine Hg may occur after administration of DMPS, DMSA or D-penicillamine. Blood and especially red blood cell elemental analyses are useful for assessing recent or ongoing exposure to organic (methyl) Hg.

Uranium High

This individual's urine uranium (U) is higher than expected which indicates higher than expected exposure to U. Renal excretion accounts for most U that is excreted from the body. Uranium is considered mildly toxic for two reasons, low-level radioactivity and moderate biochemical toxicity.

Uranium is a radioactive element with 10 isotopes with half-lives exceeding one hour. U238 constitutes about 99% of the naturally-occurring U and this is the isotope measured at DDI and reported for this individual. U238 has a half-life of 4.5 X 10 to the ninth years. It decays by alpha emission to produce thorium, Th234, the initial step in a decay chain that eventually leads to lead. Alpha, beta and gamma emissions occur during this decay process. Because of the very long half-life, the radioactivity danger is only slight. However, exposure to enriched or nuclear fuel grade U (high in U235) does pose a health hazard. The measured result (U238) does not reflect or imply exposure to enriched U235.

The toxicochemical effects of U may be more severe than the radiochemical effects for U238. Uranium has four valences (3,4,5 or 6), can combine with phosphate, citrate, pyruvate, malate, lactate, etc. in body tissues, and usually is transported in the blood as a carbonate complex. Uranium that is not excreted in urine can accumulate in bone and kidney tissues as well as in the spleen and liver. In excessive amounts, it can be nephrotoxic. Inhaled U accumulates in lung tissue. Fatigue is the most common symptom associated with chronic, low-level (natural) U exposure (DDI observations).

Uranium is more common than mercury, silver or cadmium in the earth's rock strata, and may be present, at low levels, in ground (drinking) water. Most commercial use of U is for nuclear fuel, but it may be present in ceramics or colored glass, especially ancient or antique, yellow-colored glassware.

Hair elements analysis may provide further information regarding temporal exposure to U. Whole blood U analysis may provide confirmation of very recent or ongoing exposure to uranium.